Modeling of Alpine Grassland Cover Based on Unmanned Aerial Vehicle Technology and Multi-Factor Methods: A Case Study in the East of Tibetan Plateau, China
نویسندگان
چکیده
Grassland cover and its temporal changes are key parameters in the estimation and monitoring of ecosystems and their functions, especially via remote sensing. However, the most suitable model for estimating grassland cover and the differences between models has rarely been studied in alpine meadow grasslands. In this study, field measurements of grassland cover in Gannan Prefecture, from 2014 to 2016, were acquired using unmanned aerial vehicle (UAV) technology. Single-factor parametric and multi-factor parametric/non-parametric cover inversion models were then constructed based on 14 factors related to grassland cover, and the dynamic variation of the annual maximum cover was analyzed. The results show that (1) nine out of 14 factors (longitude, latitude, elevation, the concentrations of clay and sand in the surface and bottom soils, temperature, precipitation, enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI)) exert a significant effect on grassland cover in the study area. The logarithmic model based on EVI presents the best performance, with an R2 and RMSE of 0.52 and 16.96%, respectively. Single-factor grassland cover inversion models account for only 1–49% of the variation in cover during the growth season. (2) The optimum grassland cover inversion model is the artificial neural network (BP-ANN), with an R2 and RMSE of 0.72 and 13.38%, and SDs of 0.062% and 1.615%, respectively. Both the accuracy and the stability of the BP-ANN model are higher than those of the single-factor parametric models and multi-factor parametric/non-parametric models. (3) The annual maximum cover in Gannan Prefecture presents an increasing trend over 60.60% of the entire study area, while 36.54% is presently stable and 2.86% exhibits a decreasing trend.
منابع مشابه
Quadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملEffect of Degradation Intensity on Grassland Ecosystem Services in the Alpine Region of Qinghai-Tibetan Plateau, China
The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment class...
متن کاملSnow cover and runoff modelling in a high mountain catchment with scarce data: effects of temperature and precipitation parameters
Fan Zhang,* Hongbo Zhang, Scott C. Hagen, Ming Ye, Dingbao Wang, Dongwei Gui, Chen Zeng, Lide Tian and Jingshi Liu 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China 2 Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Be...
متن کاملVertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کاملFractional Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau
Moderate-resolution imaging spectroradiometer (MODIS) snow-cover products have relatively low accuracy over the Tibetan Plateau because of its complex terrain and shallow, fragmented snow cover. In this study, fractional snow-cover (FSC) mapping algorithms were developed using a linear regression model (LR), a linear spectral mixture analysis model (LSMA) and a back-propagation artificial neura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018